Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-(Methylenedi-p-phenylene)diphthalimide

Juan Li, Yi-Tao Li* and Zi-Hua Wang

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chliyt@mails.ccnu.edu.cn

Received 19 June 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.135; data-to-parameter ratio = 8.9.

The title compound, $C_{29}H_{18}N_2O_4$, crystallizes with one halfmolecule in the asymmetric unit, the other half being generated by a crystallographic twofold rotation axis passing through the central C atom. The dihedral angle between the planes of the two central benzene rings is $67.7 (4)^{\circ}$. The terminal isoindole group is approximately planar and makes a dihedral angle of $39.20 (17)^{\circ}$ with the attached benzene ring. Intermolecular C-H···O hydrogen bonds contribute to the stability of the structure.

Related literature

For general background regarding diphthalimide, see: Guzmán-Lucero et al. (2006).

Experimental

Crystal data

$C_{29}H_{18}N_2O_4$	V = 1092.4 (4) Å ³
$M_r = 458.45$	Z = 2
Monoclinic, C2	Mo $K\alpha$ radiation
a = 31.669 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 4.913 (1) Å	T = 292 (2) K
c = 7.1543 (14) Å	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 101.087 \ (3)^{\circ}$	

Data collection

Bruker SMART 4 K CCD areadetector diffractometer Absorption correction: none 4646 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	1 restraint
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
1414 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
159 parameters	

1414 independent reflections

 $R_{\rm int}=0.099$

1161 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4-H4···O1 ⁱ	0.93	2.57	3.251 (4)	131
Summatry and a (i)	v u = 1			

Symmetry code: (i) x, y, z - 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank Professor An-Xin Wu for technical assistance and Dr Xiang-Gao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2067).

References

Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Guzmán-Lucero, D., Likhanova, N. V., Höpfl, H., Guzmán, J., Likhatchev, D. & Martínez-Palou, R. (2006). J. Arch. Org. Chem. 10, 7-20.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o3420 [doi:10.1107/81600536807031698]

N,N'-(Methylenedi-p-phenylene)diphthalimide

J. Li, Y.-T. Li and Z.-H. Wang

Comment

Bisimides are heterocyclic compounds, of which some have biological activivity. Moreover, they are synthetic precursor with application in organic synthesis, supramolecular chemistry, polymer synthesis, and for the development new materials and molecular electronic devices (Guzmán-Lucero *et al.*, 2006).

The molecule of the title, (I) is shown in Fig. 1. The compound crystallizes with one half-molecule in the asymmetric unit, the other half being generated by a crystallographic twofold rotation axis passing through the central C atom. There are no signicant different between the bonds and angles of the two molecules. The dihedral angle between the planes of the two central benzene rings is $67.7 (4)^{\circ}$. The terminal isoindole group is approximately planar and makes adihedral angle of $39.20 (17)^{\circ}$ with the attached benzene ring.

Intermolecular C—H…O hydrogen bonds contribute to the stability of the structure (Table 1).

Experimental

A solution of phthaloyl dichoride (420, 2 mmol) was added slowly over a period of 10 min to a solution of 4-(4aminobenzyl)benzenamine (240 mg, 2 mmol) in dichloromethane (20 ml) at 273 K with light yellow solid precipitated. Triethylamine (5 ml) was then added, while the pecipitated light yellow solid was dissolved. After being stirred for 10 hr,the reacted solution became yellow suspension. The compound was purified by filtration with suction and dried (I) (yield 410 mg, 29.14%). Single crystals of (I) were obtained by recrystallization from DMF at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map and then included with constrained bond lengths and isotropic displacement parameters: C—H=0.93Å and $U_{iso}(H)=1.5U_{eq}(C)$ for methyl, C—H=0.97Å and $U_{iso}(H)=1.2U_{eq}(C)$ for methylene.

Figures

Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

N,*N*'-(Methylenedi-*p*-phenylene)diphthalimide

Crystal data	
$C_{29}H_{18}N_2O_4$	$F_{000} = 476$
$M_r = 458.45$	$D_{\rm x} = 1.394 {\rm ~Mg~m^{-3}}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 1420 reflections
<i>a</i> = 31.669 (6) Å	$\theta = 2.6 - 23.9^{\circ}$
<i>b</i> = 4.913 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 7.1543 (14) Å	T = 292 (2) K
$\beta = 101.087 \ (3)^{\circ}$	Plate, colorless
$V = 1092.4 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Bruker SMART 4K CCD area-detector diffractometer	1161 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.099$
Monochromator: graphite	$\theta_{\text{max}} = 27.7^{\circ}$
T = 292(2) K	$\theta_{\min} = 1.3^{\circ}$
φ and ω scans	$h = -38 \rightarrow 40$
Absorption correction: none	$k = -6 \rightarrow 6$
4646 measured reflections	$l = -9 \longrightarrow 9$
1414 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.050$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0709P)^{2} + 0.0873P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.136$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
1414 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
159 parameters	Extinction correction: none
1 restraint	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y C1 0.0000 0.0462 (11) 1.2197 (11) 0.5000 H1A 0.0149 1.3359 0.4244 0.055* 0.50 0.50 H1B -0.01491.3359 0.5756 0.055* 01 0.08076(7) 0.0545 (6) 0.4639(6) 1.2283(3)N1 0.12141 (7) 0.5510(6) 0.9965 (3) 0.0411 (6) C2 0.03274(8)1.0474 (6) 0.6323(4)0.0380(7)C6 0.08665 (9) 0.6935(7)0.6772 (4) 0.0430 (8) H6 0.1027 0.5654 0.052* 0.6253 C7 0.09194 (9) 0.7230(7)0.8729(4)0.0382(7)C5 0.06775 (10) 0.9128 (7) 0.9478 (4) 0.0453 (8) Н5 0.0711 0.9328 1.0791 0.054* C8 0.11301 (9) 0.4301 (7) 1.1647 (4) 0.0411(7)C3 0.03847 (10) 1.0736(7) 0.8271 (4) 0.0462 (8) H3 0.0224 1.2017 0.8788 0.055* C4 0.05731 (9) 0.8558(7) 0.5600 (4) 0.0433(7)H4 0.0540 0.8359 0.4287 0.052* C10 0.15041 (9) 0.2547 (7) 1.2393 (4) 0.0436(7) C9 0.16170 (9) 0.4632 (8) 0.9611 (4) 0.0467 (8) C15 0.17918 (9) 0.2712 (7) 1.1170 (4) 0.0452 (8) 02 0.17754 (7) 0.5373 (7) 0.8300 (4) 0.0663 (8) C13 0.22405 (11) -0.0462(9)1.3047 (5) 0.0626 (10) H13 0.2492 -0.14871.3296 0.075* C12 0.19526 (12) -0.0669 (10) 1.4255 (5) 0.0623 (10) H12 0.075* 0.2009 -0.18611.5283 C11 0.15807 (11) 0.0869 (8) 1.3963 (5) 0.0538 (9) H11 0.1389 0.0775 1.4796 0.065* C14 0.21666 (10) 0.1221 (8) 1.1479 (5) 0.0550 (9) H14 0.2362 0.1344 1.0663 0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
	-			•	-

supplementary materials

C1	0.045 (2)	0.043 (2)	0.049 (2)	0.000	0.0044 (19)	0.000
01	0.0553 (12)	0.0652 (16)	0.0487 (12)	0.0067 (13)	0.0246 (10)	-0.0001 (12)
N1	0.0334 (12)	0.0523 (16)	0.0379 (12)	-0.0001 (12)	0.0081 (9)	-0.0005 (12)
C2	0.0318 (13)	0.0395 (16)	0.0429 (15)	-0.0057 (13)	0.0075 (11)	-0.0021 (13)
C6	0.0377 (15)	0.051 (2)	0.0422 (16)	0.0029 (15)	0.0117 (12)	-0.0059 (15)
C7	0.0334 (14)	0.0439 (16)	0.0377 (14)	-0.0041 (13)	0.0080 (11)	0.0002 (14)
C5	0.0512 (17)	0.049 (2)	0.0368 (15)	0.0000 (16)	0.0102 (12)	-0.0059 (14)
C8	0.0449 (16)	0.0454 (18)	0.0343 (14)	-0.0037 (15)	0.0111 (11)	-0.0040 (13)
C3	0.0482 (17)	0.0474 (19)	0.0450 (16)	0.0025 (15)	0.0136 (13)	-0.0088 (15)
C4	0.0424 (16)	0.0526 (19)	0.0354 (14)	0.0019 (14)	0.0085 (12)	-0.0031 (14)
C10	0.0378 (15)	0.0486 (18)	0.0425 (16)	-0.0036 (14)	0.0028 (12)	-0.0029 (14)
C9	0.0327 (14)	0.060 (2)	0.0476 (17)	-0.0019 (15)	0.0086 (12)	0.0007 (16)
C15	0.0368 (15)	0.050 (2)	0.0469 (17)	-0.0035 (14)	0.0040 (13)	-0.0003 (15)
O2	0.0431 (12)	0.099 (2)	0.0623 (14)	0.0104 (14)	0.0237 (11)	0.0237 (15)
C13	0.0462 (18)	0.065 (2)	0.072 (2)	0.0046 (19)	-0.0004 (17)	0.008 (2)
C12	0.061 (2)	0.061 (2)	0.058 (2)	-0.001 (2)	-0.0065 (17)	0.0114 (19)
C11	0.0558 (19)	0.062 (2)	0.0417 (17)	-0.0080 (17)	0.0043 (14)	0.0063 (17)
C14	0.0412 (17)	0.065 (2)	0.058 (2)	0.0027 (16)	0.0072 (15)	0.0041 (18)

Geometric parameters (Å, °)

1.520 (4)	C8—C10	1.479 (4)
1.520 (4)	С3—Н3	0.9300
0.9700	C4—H4	0.9300
0.9700	C10-C11	1.376 (5)
1.207 (3)	C10—C15	1.382 (5)
1.412 (4)	C9—O2	1.202 (4)
1.415 (4)	C9—C15	1.484 (5)
1.432 (4)	C15—C14	1.376 (5)
1.376 (4)	C13—C12	1.375 (6)
1.384 (4)	C13—C14	1.377 (5)
1.379 (4)	C13—H13	0.9300
1.385 (4)	C12—C11	1.381 (5)
0.9300	C12—H12	0.9300
1.379 (4)	C11—H11	0.9300
1.386 (4)	C14—H14	0.9300
0.9300		
112.3 (4)	С5—С3—Н3	119.3
109.1	C6—C4—C2	121.9 (3)
109.1	C6—C4—H4	119.1
109.1	C2—C4—H4	119.1
109.1	C11—C10—C15	121.2 (3)
107.9	C11—C10—C8	130.3 (3)
110.4 (3)	C15—C10—C8	108.5 (3)
124.6 (2)	O2—C9—N1	125.0 (3)
124.9 (3)	O2—C9—C15	128.9 (3)
117.9 (3)	N1—C9—C15	106.2 (3)
121.3 (3)	C14—C15—C10	121.3 (3)
	$\begin{array}{c} 1.520 \ (4) \\ 1.520 \ (4) \\ 0.9700 \\ 0.9700 \\ 1.207 \ (3) \\ 1.412 \ (4) \\ 1.412 \ (4) \\ 1.415 \ (4) \\ 1.32 \ (4) \\ 1.376 \ (4) \\ 1.384 \ (4) \\ 1.379 \ (4) \\ 1.385 \ (4) \\ 0.9300 \\ 1.379 \ (4) \\ 1.386 \ (4) \\ 0.9300 \\ 112.3 \ (4) \\ 109.1 \\ $	1.520 (4) $C8-C10$ $1.520 (4)$ $C3-H3$ 0.9700 $C4-H4$ 0.9700 $C10-C11$ $1.207 (3)$ $C10-C15$ $1.412 (4)$ $C9-O2$ $1.415 (4)$ $C9-C15$ $1.432 (4)$ $C15-C14$ $1.376 (4)$ $C13-C12$ $1.384 (4)$ $C13-C14$ $1.379 (4)$ $C12-C11$ 0.9300 $C12-H12$ $1.379 (4)$ $C11-H11$ $1.386 (4)$ $C14-H14$ 0.9300 $C12-H12$ $1.23 (4)$ $C5-C3-H3$ 109.1 $C6-C4-C2$ 109.1 $C6-C4-H4$ 109.1 $C11-C10-C15$ 107.9 $C11-C10-C15$ 107.9 $C11-C10-C8$ $110.4 (3)$ $C15-C10-C8$ $124.9 (3)$ $O2-C9-C15$ $117.9 (3)$ $N1-C9-C15$ $121.3 (3)$ $C14-C15-C10$

C4—C2—C1	120.8 (3)		C14—C15—C9		130.2 (3)
C4—C6—C7	119.4 (3)		C10—C15—C9		108.5 (3)
С4—С6—Н6	120.3		C12—C13—C14		121.8 (4)
С7—С6—Н6	120.3		C12—C13—H13		119.1
C5—C7—C6	119.7 (3)		C14—C13—H13		119.1
C5—C7—N1	120.2 (3)		C13—C12—C11		120.9 (4)
C6—C7—N1	120.0 (3)		C13—C12—H12		119.6
C7—C5—C3	119.9 (3)		C11—C12—H12		119.6
С7—С5—Н5	120.1		C10-C11-C12		117.6 (3)
С3—С5—Н5	120.1		C10-C11-H11		121.2
O1—C8—N1	125.1 (3)		C12—C11—H11		121.2
O1—C8—C10	128.4 (3)		C15—C14—C13		117.2 (4)
N1—C8—C10	106.5 (3)		C15-C14-H14		121.4
C2—C3—C5	121.3 (3)		C13—C14—H14		121.4
С2—С3—Н3	119.3				
C2 ⁱ —C1—C2—C3	-122.7 (3)		O1—C8—C10—C15		177.8 (3)
C2 ⁱ —C1—C2—C4	56.4 (2)		N1-C8-C10-C15		-0.7 (3)
C4—C6—C7—C5	0.3 (5)		C8—N1—C9—O2		-178.4 (4)
C4—C6—C7—N1	178.3 (3)		C7—N1—C9—O2		5.5 (5)
C8—N1—C7—C5	40.3 (4)		C8—N1—C9—C15		0.9 (4)
C9—N1—C7—C5	-144.2 (3)		C7—N1—C9—C15		-175.2 (3)
C8—N1—C7—C6	-137.7 (3)		C11—C10—C15—C14		-0.4 (5)
C9—N1—C7—C6	37.8 (4)		C8-C10-C15-C14		-178.1 (3)
C6—C7—C5—C3	-0.3 (5)		C11—C10—C15—C9		179.0 (3)
N1—C7—C5—C3	-178.3 (3)		C8—C10—C15—C9		1.2 (4)
C9—N1—C8—O1	-178.7 (3)		O2-C9-C15-C14		-2.8 (7)
C7—N1—C8—O1	-2.7 (5)		N1-C9-C15-C14		177.9 (3)
C9—N1—C8—C10	-0.1 (3)		O2-C9-C15-C10		178.0 (4)
C7—N1—C8—C10	175.9 (3)		N1-C9-C15-C10		-1.3 (4)
C4—C2—C3—C5	-0.3 (5)		C14—C13—C12—C11		-1.6 (6)
C1—C2—C3—C5	178.8 (3)		C15—C10—C11—C12		-0.9 (5)
C7—C5—C3—C2	0.3 (5)		C8-C10-C11-C12		176.3 (4)
C7—C6—C4—C2	-0.3 (5)		C13—C12—C11—C10		1.8 (6)
C3—C2—C4—C6	0.3 (5)		C10-C15-C14-C13		0.6 (5)
C1—C2—C4—C6	-178.8 (3)		C9—C15—C14—C13		-178.5 (3)
O1-C8-C10-C11	0.4 (6)		C12—C13—C14—C15		0.4 (6)
N1-C8-C10-C11	-178.1 (3)				
Symmetry codes: (i) $-x$, y , $-z+1$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C4—H4···O1 ⁱⁱ		0.93	2.57	3.251 (4)	131

Symmetry codes: (ii) x, y, z-1.

